3.320 \(\int \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx\)

Optimal. Leaf size=122 \[ -\frac {\sqrt {a-i b} (B+i A) \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{d}+\frac {\sqrt {a+i b} (-B+i A) \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{d}+\frac {2 B \sqrt {a+b \tan (c+d x)}}{d} \]

[Out]

-(I*A+B)*arctanh((a+b*tan(d*x+c))^(1/2)/(a-I*b)^(1/2))*(a-I*b)^(1/2)/d+(I*A-B)*arctanh((a+b*tan(d*x+c))^(1/2)/
(a+I*b)^(1/2))*(a+I*b)^(1/2)/d+2*B*(a+b*tan(d*x+c))^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.21, antiderivative size = 122, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 5, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {3528, 3539, 3537, 63, 208} \[ -\frac {\sqrt {a-i b} (B+i A) \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{d}+\frac {\sqrt {a+i b} (-B+i A) \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{d}+\frac {2 B \sqrt {a+b \tan (c+d x)}}{d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*Tan[c + d*x]]*(A + B*Tan[c + d*x]),x]

[Out]

-((Sqrt[a - I*b]*(I*A + B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]])/d) + (Sqrt[a + I*b]*(I*A - B)*ArcT
anh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a + I*b]])/d + (2*B*Sqrt[a + b*Tan[c + d*x]])/d

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 3528

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(d
*(a + b*Tan[e + f*x])^m)/(f*m), x] + Int[(a + b*Tan[e + f*x])^(m - 1)*Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x
], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && GtQ[m, 0]

Rule 3537

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c*
d)/f, Subst[Int[(a + (b*x)/d)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rule 3539

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c
 + I*d)/2, Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Dist[(c - I*d)/2, Int[(a + b*Tan[e + f*x]
)^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
&& NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rubi steps

\begin {align*} \int \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx &=\frac {2 B \sqrt {a+b \tan (c+d x)}}{d}+\int \frac {a A-b B+(A b+a B) \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx\\ &=\frac {2 B \sqrt {a+b \tan (c+d x)}}{d}+\frac {1}{2} ((a-i b) (A-i B)) \int \frac {1+i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx+\frac {1}{2} ((a+i b) (A+i B)) \int \frac {1-i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx\\ &=\frac {2 B \sqrt {a+b \tan (c+d x)}}{d}+\frac {(i (a-i b) (A-i B)) \operatorname {Subst}\left (\int \frac {1}{(-1+x) \sqrt {a-i b x}} \, dx,x,i \tan (c+d x)\right )}{2 d}-\frac {((i a-b) (A+i B)) \operatorname {Subst}\left (\int \frac {1}{(-1+x) \sqrt {a+i b x}} \, dx,x,-i \tan (c+d x)\right )}{2 d}\\ &=\frac {2 B \sqrt {a+b \tan (c+d x)}}{d}-\frac {((a-i b) (A-i B)) \operatorname {Subst}\left (\int \frac {1}{-1-\frac {i a}{b}+\frac {i x^2}{b}} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{b d}-\frac {((a+i b) (A+i B)) \operatorname {Subst}\left (\int \frac {1}{-1+\frac {i a}{b}-\frac {i x^2}{b}} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{b d}\\ &=-\frac {\sqrt {a-i b} (i A+B) \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{d}+\frac {\sqrt {a+i b} (i A-B) \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{d}+\frac {2 B \sqrt {a+b \tan (c+d x)}}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.13, size = 120, normalized size = 0.98 \[ \frac {-i \sqrt {a-i b} (A-i B) \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )+i \sqrt {a+i b} (A+i B) \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )+2 B \sqrt {a+b \tan (c+d x)}}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*Tan[c + d*x]]*(A + B*Tan[c + d*x]),x]

[Out]

((-I)*Sqrt[a - I*b]*(A - I*B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]] + I*Sqrt[a + I*b]*(A + I*B)*ArcT
anh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a + I*b]] + 2*B*Sqrt[a + b*Tan[c + d*x]])/d

________________________________________________________________________________________

fricas [B]  time = 16.69, size = 8608, normalized size = 70.56 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, algorithm="fricas")

[Out]

1/4*(4*sqrt(2)*d^5*sqrt(-((2*A*B*b - (A^2 - B^2)*a)*d^2*sqrt(((A^4 + 2*A^2*B^2 + B^4)*a^2 + (A^4 + 2*A^2*B^2 +
 B^4)*b^2)/d^4) - (A^4 + 2*A^2*B^2 + B^4)*a^2 - (A^4 + 2*A^2*B^2 + B^4)*b^2)/(4*A^2*B^2*a^2 + 4*(A^3*B - A*B^3
)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2))*sqrt((4*A^2*B^2*a^2 + 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^
2)/d^4)*(((A^4 + 2*A^2*B^2 + B^4)*a^2 + (A^4 + 2*A^2*B^2 + B^4)*b^2)/d^4)^(3/4)*arctan(((2*(A^7*B + 3*A^5*B^3
+ 3*A^3*B^5 + A*B^7)*a^3 + (A^8 + 2*A^6*B^2 - 2*A^2*B^6 - B^8)*a^2*b + 2*(A^7*B + 3*A^5*B^3 + 3*A^3*B^5 + A*B^
7)*a*b^2 + (A^8 + 2*A^6*B^2 - 2*A^2*B^6 - B^8)*b^3)*d^4*sqrt((4*A^2*B^2*a^2 + 4*(A^3*B - A*B^3)*a*b + (A^4 - 2
*A^2*B^2 + B^4)*b^2)/d^4)*sqrt(((A^4 + 2*A^2*B^2 + B^4)*a^2 + (A^4 + 2*A^2*B^2 + B^4)*b^2)/d^4) + (2*(A^9*B +
4*A^7*B^3 + 6*A^5*B^5 + 4*A^3*B^7 + A*B^9)*a^4 + (A^10 + 3*A^8*B^2 + 2*A^6*B^4 - 2*A^4*B^6 - 3*A^2*B^8 - B^10)
*a^3*b + 2*(A^9*B + 4*A^7*B^3 + 6*A^5*B^5 + 4*A^3*B^7 + A*B^9)*a^2*b^2 + (A^10 + 3*A^8*B^2 + 2*A^6*B^4 - 2*A^4
*B^6 - 3*A^2*B^8 - B^10)*a*b^3)*d^2*sqrt((4*A^2*B^2*a^2 + 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)
/d^4) + sqrt(2)*((2*(A^3*B^2 + A*B^4)*a + (A^4*B - B^5)*b)*d^7*sqrt((4*A^2*B^2*a^2 + 4*(A^3*B - A*B^3)*a*b + (
A^4 - 2*A^2*B^2 + B^4)*b^2)/d^4)*sqrt(((A^4 + 2*A^2*B^2 + B^4)*a^2 + (A^4 + 2*A^2*B^2 + B^4)*b^2)/d^4) + (2*(A
^5*B^2 + 2*A^3*B^4 + A*B^6)*a^2 + (3*A^6*B + 5*A^4*B^3 + A^2*B^5 - B^7)*a*b + (A^7 + A^5*B^2 - A^3*B^4 - A*B^6
)*b^2)*d^5*sqrt((4*A^2*B^2*a^2 + 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/d^4))*sqrt(-((2*A*B*b -
(A^2 - B^2)*a)*d^2*sqrt(((A^4 + 2*A^2*B^2 + B^4)*a^2 + (A^4 + 2*A^2*B^2 + B^4)*b^2)/d^4) - (A^4 + 2*A^2*B^2 +
B^4)*a^2 - (A^4 + 2*A^2*B^2 + B^4)*b^2)/(4*A^2*B^2*a^2 + 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2))
*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*(((A^4 + 2*A^2*B^2 + B^4)*a^2 + (A^4 + 2*A^2*B^2 + B^4)*
b^2)/d^4)^(3/4) + sqrt(2)*(B*d^7*sqrt((4*A^2*B^2*a^2 + 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/d^
4)*sqrt(((A^4 + 2*A^2*B^2 + B^4)*a^2 + (A^4 + 2*A^2*B^2 + B^4)*b^2)/d^4) + ((A^2*B + B^3)*a + (A^3 + A*B^2)*b)
*d^5*sqrt((4*A^2*B^2*a^2 + 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/d^4))*sqrt(-((2*A*B*b - (A^2 -
 B^2)*a)*d^2*sqrt(((A^4 + 2*A^2*B^2 + B^4)*a^2 + (A^4 + 2*A^2*B^2 + B^4)*b^2)/d^4) - (A^4 + 2*A^2*B^2 + B^4)*a
^2 - (A^4 + 2*A^2*B^2 + B^4)*b^2)/(4*A^2*B^2*a^2 + 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2))*sqrt(
((4*(A^4*B^2 + A^2*B^4)*a^4 + 4*(A^5*B - A*B^5)*a^3*b + (A^6 + 3*A^4*B^2 + 3*A^2*B^4 + B^6)*a^2*b^2 + 4*(A^5*B
 - A*B^5)*a*b^3 + (A^6 - A^4*B^2 - A^2*B^4 + B^6)*b^4)*d^2*sqrt(((A^4 + 2*A^2*B^2 + B^4)*a^2 + (A^4 + 2*A^2*B^
2 + B^4)*b^2)/d^4)*cos(d*x + c) + sqrt(2)*((4*A^2*B^3*a^3 + 4*(2*A^3*B^2 - A*B^4)*a^2*b + (5*A^4*B - 6*A^2*B^3
 + B^5)*a*b^2 + (A^5 - 2*A^3*B^2 + A*B^4)*b^3)*d^3*sqrt(((A^4 + 2*A^2*B^2 + B^4)*a^2 + (A^4 + 2*A^2*B^2 + B^4)
*b^2)/d^4)*cos(d*x + c) + (4*(A^4*B^3 + A^2*B^5)*a^4 + 4*(A^5*B^2 - A*B^6)*a^3*b + (A^6*B + 3*A^4*B^3 + 3*A^2*
B^5 + B^7)*a^2*b^2 + 4*(A^5*B^2 - A*B^6)*a*b^3 + (A^6*B - A^4*B^3 - A^2*B^5 + B^7)*b^4)*d*cos(d*x + c))*sqrt(-
((2*A*B*b - (A^2 - B^2)*a)*d^2*sqrt(((A^4 + 2*A^2*B^2 + B^4)*a^2 + (A^4 + 2*A^2*B^2 + B^4)*b^2)/d^4) - (A^4 +
2*A^2*B^2 + B^4)*a^2 - (A^4 + 2*A^2*B^2 + B^4)*b^2)/(4*A^2*B^2*a^2 + 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2
+ B^4)*b^2))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*(((A^4 + 2*A^2*B^2 + B^4)*a^2 + (A^4 + 2*A^2
*B^2 + B^4)*b^2)/d^4)^(1/4) + (4*(A^6*B^2 + 2*A^4*B^4 + A^2*B^6)*a^5 + 4*(A^7*B + A^5*B^3 - A^3*B^5 - A*B^7)*a
^4*b + (A^8 + 4*A^6*B^2 + 6*A^4*B^4 + 4*A^2*B^6 + B^8)*a^3*b^2 + 4*(A^7*B + A^5*B^3 - A^3*B^5 - A*B^7)*a^2*b^3
 + (A^8 - 2*A^4*B^4 + B^8)*a*b^4)*cos(d*x + c) + (4*(A^6*B^2 + 2*A^4*B^4 + A^2*B^6)*a^4*b + 4*(A^7*B + A^5*B^3
 - A^3*B^5 - A*B^7)*a^3*b^2 + (A^8 + 4*A^6*B^2 + 6*A^4*B^4 + 4*A^2*B^6 + B^8)*a^2*b^3 + 4*(A^7*B + A^5*B^3 - A
^3*B^5 - A*B^7)*a*b^4 + (A^8 - 2*A^4*B^4 + B^8)*b^5)*sin(d*x + c))/((a^2 + b^2)*cos(d*x + c)))*(((A^4 + 2*A^2*
B^2 + B^4)*a^2 + (A^4 + 2*A^2*B^2 + B^4)*b^2)/d^4)^(3/4))/(4*(A^10*B^2 + 4*A^8*B^4 + 6*A^6*B^6 + 4*A^4*B^8 + A
^2*B^10)*a^4*b + 4*(A^11*B + 3*A^9*B^3 + 2*A^7*B^5 - 2*A^5*B^7 - 3*A^3*B^9 - A*B^11)*a^3*b^2 + (A^12 + 6*A^10*
B^2 + 15*A^8*B^4 + 20*A^6*B^6 + 15*A^4*B^8 + 6*A^2*B^10 + B^12)*a^2*b^3 + 4*(A^11*B + 3*A^9*B^3 + 2*A^7*B^5 -
2*A^5*B^7 - 3*A^3*B^9 - A*B^11)*a*b^4 + (A^12 + 2*A^10*B^2 - A^8*B^4 - 4*A^6*B^6 - A^4*B^8 + 2*A^2*B^10 + B^12
)*b^5)) + 4*sqrt(2)*d^5*sqrt(-((2*A*B*b - (A^2 - B^2)*a)*d^2*sqrt(((A^4 + 2*A^2*B^2 + B^4)*a^2 + (A^4 + 2*A^2*
B^2 + B^4)*b^2)/d^4) - (A^4 + 2*A^2*B^2 + B^4)*a^2 - (A^4 + 2*A^2*B^2 + B^4)*b^2)/(4*A^2*B^2*a^2 + 4*(A^3*B -
A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2))*sqrt((4*A^2*B^2*a^2 + 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^
4)*b^2)/d^4)*(((A^4 + 2*A^2*B^2 + B^4)*a^2 + (A^4 + 2*A^2*B^2 + B^4)*b^2)/d^4)^(3/4)*arctan(-((2*(A^7*B + 3*A^
5*B^3 + 3*A^3*B^5 + A*B^7)*a^3 + (A^8 + 2*A^6*B^2 - 2*A^2*B^6 - B^8)*a^2*b + 2*(A^7*B + 3*A^5*B^3 + 3*A^3*B^5
+ A*B^7)*a*b^2 + (A^8 + 2*A^6*B^2 - 2*A^2*B^6 - B^8)*b^3)*d^4*sqrt((4*A^2*B^2*a^2 + 4*(A^3*B - A*B^3)*a*b + (A
^4 - 2*A^2*B^2 + B^4)*b^2)/d^4)*sqrt(((A^4 + 2*A^2*B^2 + B^4)*a^2 + (A^4 + 2*A^2*B^2 + B^4)*b^2)/d^4) + (2*(A^
9*B + 4*A^7*B^3 + 6*A^5*B^5 + 4*A^3*B^7 + A*B^9)*a^4 + (A^10 + 3*A^8*B^2 + 2*A^6*B^4 - 2*A^4*B^6 - 3*A^2*B^8 -
 B^10)*a^3*b + 2*(A^9*B + 4*A^7*B^3 + 6*A^5*B^5 + 4*A^3*B^7 + A*B^9)*a^2*b^2 + (A^10 + 3*A^8*B^2 + 2*A^6*B^4 -
 2*A^4*B^6 - 3*A^2*B^8 - B^10)*a*b^3)*d^2*sqrt((4*A^2*B^2*a^2 + 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4
)*b^2)/d^4) - sqrt(2)*((2*(A^3*B^2 + A*B^4)*a + (A^4*B - B^5)*b)*d^7*sqrt((4*A^2*B^2*a^2 + 4*(A^3*B - A*B^3)*a
*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/d^4)*sqrt(((A^4 + 2*A^2*B^2 + B^4)*a^2 + (A^4 + 2*A^2*B^2 + B^4)*b^2)/d^4) +
 (2*(A^5*B^2 + 2*A^3*B^4 + A*B^6)*a^2 + (3*A^6*B + 5*A^4*B^3 + A^2*B^5 - B^7)*a*b + (A^7 + A^5*B^2 - A^3*B^4 -
 A*B^6)*b^2)*d^5*sqrt((4*A^2*B^2*a^2 + 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/d^4))*sqrt(-((2*A*
B*b - (A^2 - B^2)*a)*d^2*sqrt(((A^4 + 2*A^2*B^2 + B^4)*a^2 + (A^4 + 2*A^2*B^2 + B^4)*b^2)/d^4) - (A^4 + 2*A^2*
B^2 + B^4)*a^2 - (A^4 + 2*A^2*B^2 + B^4)*b^2)/(4*A^2*B^2*a^2 + 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)
*b^2))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*(((A^4 + 2*A^2*B^2 + B^4)*a^2 + (A^4 + 2*A^2*B^2 +
 B^4)*b^2)/d^4)^(3/4) - sqrt(2)*(B*d^7*sqrt((4*A^2*B^2*a^2 + 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b
^2)/d^4)*sqrt(((A^4 + 2*A^2*B^2 + B^4)*a^2 + (A^4 + 2*A^2*B^2 + B^4)*b^2)/d^4) + ((A^2*B + B^3)*a + (A^3 + A*B
^2)*b)*d^5*sqrt((4*A^2*B^2*a^2 + 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2)/d^4))*sqrt(-((2*A*B*b -
(A^2 - B^2)*a)*d^2*sqrt(((A^4 + 2*A^2*B^2 + B^4)*a^2 + (A^4 + 2*A^2*B^2 + B^4)*b^2)/d^4) - (A^4 + 2*A^2*B^2 +
B^4)*a^2 - (A^4 + 2*A^2*B^2 + B^4)*b^2)/(4*A^2*B^2*a^2 + 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2))
*sqrt(((4*(A^4*B^2 + A^2*B^4)*a^4 + 4*(A^5*B - A*B^5)*a^3*b + (A^6 + 3*A^4*B^2 + 3*A^2*B^4 + B^6)*a^2*b^2 + 4*
(A^5*B - A*B^5)*a*b^3 + (A^6 - A^4*B^2 - A^2*B^4 + B^6)*b^4)*d^2*sqrt(((A^4 + 2*A^2*B^2 + B^4)*a^2 + (A^4 + 2*
A^2*B^2 + B^4)*b^2)/d^4)*cos(d*x + c) - sqrt(2)*((4*A^2*B^3*a^3 + 4*(2*A^3*B^2 - A*B^4)*a^2*b + (5*A^4*B - 6*A
^2*B^3 + B^5)*a*b^2 + (A^5 - 2*A^3*B^2 + A*B^4)*b^3)*d^3*sqrt(((A^4 + 2*A^2*B^2 + B^4)*a^2 + (A^4 + 2*A^2*B^2
+ B^4)*b^2)/d^4)*cos(d*x + c) + (4*(A^4*B^3 + A^2*B^5)*a^4 + 4*(A^5*B^2 - A*B^6)*a^3*b + (A^6*B + 3*A^4*B^3 +
3*A^2*B^5 + B^7)*a^2*b^2 + 4*(A^5*B^2 - A*B^6)*a*b^3 + (A^6*B - A^4*B^3 - A^2*B^5 + B^7)*b^4)*d*cos(d*x + c))*
sqrt(-((2*A*B*b - (A^2 - B^2)*a)*d^2*sqrt(((A^4 + 2*A^2*B^2 + B^4)*a^2 + (A^4 + 2*A^2*B^2 + B^4)*b^2)/d^4) - (
A^4 + 2*A^2*B^2 + B^4)*a^2 - (A^4 + 2*A^2*B^2 + B^4)*b^2)/(4*A^2*B^2*a^2 + 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^
2*B^2 + B^4)*b^2))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*(((A^4 + 2*A^2*B^2 + B^4)*a^2 + (A^4 +
 2*A^2*B^2 + B^4)*b^2)/d^4)^(1/4) + (4*(A^6*B^2 + 2*A^4*B^4 + A^2*B^6)*a^5 + 4*(A^7*B + A^5*B^3 - A^3*B^5 - A*
B^7)*a^4*b + (A^8 + 4*A^6*B^2 + 6*A^4*B^4 + 4*A^2*B^6 + B^8)*a^3*b^2 + 4*(A^7*B + A^5*B^3 - A^3*B^5 - A*B^7)*a
^2*b^3 + (A^8 - 2*A^4*B^4 + B^8)*a*b^4)*cos(d*x + c) + (4*(A^6*B^2 + 2*A^4*B^4 + A^2*B^6)*a^4*b + 4*(A^7*B + A
^5*B^3 - A^3*B^5 - A*B^7)*a^3*b^2 + (A^8 + 4*A^6*B^2 + 6*A^4*B^4 + 4*A^2*B^6 + B^8)*a^2*b^3 + 4*(A^7*B + A^5*B
^3 - A^3*B^5 - A*B^7)*a*b^4 + (A^8 - 2*A^4*B^4 + B^8)*b^5)*sin(d*x + c))/((a^2 + b^2)*cos(d*x + c)))*(((A^4 +
2*A^2*B^2 + B^4)*a^2 + (A^4 + 2*A^2*B^2 + B^4)*b^2)/d^4)^(3/4))/(4*(A^10*B^2 + 4*A^8*B^4 + 6*A^6*B^6 + 4*A^4*B
^8 + A^2*B^10)*a^4*b + 4*(A^11*B + 3*A^9*B^3 + 2*A^7*B^5 - 2*A^5*B^7 - 3*A^3*B^9 - A*B^11)*a^3*b^2 + (A^12 + 6
*A^10*B^2 + 15*A^8*B^4 + 20*A^6*B^6 + 15*A^4*B^8 + 6*A^2*B^10 + B^12)*a^2*b^3 + 4*(A^11*B + 3*A^9*B^3 + 2*A^7*
B^5 - 2*A^5*B^7 - 3*A^3*B^9 - A*B^11)*a*b^4 + (A^12 + 2*A^10*B^2 - A^8*B^4 - 4*A^6*B^6 - A^4*B^8 + 2*A^2*B^10
+ B^12)*b^5)) - sqrt(2)*((2*A*B*b - (A^2 - B^2)*a)*d^3*sqrt(((A^4 + 2*A^2*B^2 + B^4)*a^2 + (A^4 + 2*A^2*B^2 +
B^4)*b^2)/d^4) + ((A^4 + 2*A^2*B^2 + B^4)*a^2 + (A^4 + 2*A^2*B^2 + B^4)*b^2)*d)*sqrt(-((2*A*B*b - (A^2 - B^2)*
a)*d^2*sqrt(((A^4 + 2*A^2*B^2 + B^4)*a^2 + (A^4 + 2*A^2*B^2 + B^4)*b^2)/d^4) - (A^4 + 2*A^2*B^2 + B^4)*a^2 - (
A^4 + 2*A^2*B^2 + B^4)*b^2)/(4*A^2*B^2*a^2 + 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2))*(((A^4 + 2*
A^2*B^2 + B^4)*a^2 + (A^4 + 2*A^2*B^2 + B^4)*b^2)/d^4)^(1/4)*log(((4*(A^4*B^2 + A^2*B^4)*a^4 + 4*(A^5*B - A*B^
5)*a^3*b + (A^6 + 3*A^4*B^2 + 3*A^2*B^4 + B^6)*a^2*b^2 + 4*(A^5*B - A*B^5)*a*b^3 + (A^6 - A^4*B^2 - A^2*B^4 +
B^6)*b^4)*d^2*sqrt(((A^4 + 2*A^2*B^2 + B^4)*a^2 + (A^4 + 2*A^2*B^2 + B^4)*b^2)/d^4)*cos(d*x + c) + sqrt(2)*((4
*A^2*B^3*a^3 + 4*(2*A^3*B^2 - A*B^4)*a^2*b + (5*A^4*B - 6*A^2*B^3 + B^5)*a*b^2 + (A^5 - 2*A^3*B^2 + A*B^4)*b^3
)*d^3*sqrt(((A^4 + 2*A^2*B^2 + B^4)*a^2 + (A^4 + 2*A^2*B^2 + B^4)*b^2)/d^4)*cos(d*x + c) + (4*(A^4*B^3 + A^2*B
^5)*a^4 + 4*(A^5*B^2 - A*B^6)*a^3*b + (A^6*B + 3*A^4*B^3 + 3*A^2*B^5 + B^7)*a^2*b^2 + 4*(A^5*B^2 - A*B^6)*a*b^
3 + (A^6*B - A^4*B^3 - A^2*B^5 + B^7)*b^4)*d*cos(d*x + c))*sqrt(-((2*A*B*b - (A^2 - B^2)*a)*d^2*sqrt(((A^4 + 2
*A^2*B^2 + B^4)*a^2 + (A^4 + 2*A^2*B^2 + B^4)*b^2)/d^4) - (A^4 + 2*A^2*B^2 + B^4)*a^2 - (A^4 + 2*A^2*B^2 + B^4
)*b^2)/(4*A^2*B^2*a^2 + 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^2))*sqrt((a*cos(d*x + c) + b*sin(d*x
 + c))/cos(d*x + c))*(((A^4 + 2*A^2*B^2 + B^4)*a^2 + (A^4 + 2*A^2*B^2 + B^4)*b^2)/d^4)^(1/4) + (4*(A^6*B^2 + 2
*A^4*B^4 + A^2*B^6)*a^5 + 4*(A^7*B + A^5*B^3 - A^3*B^5 - A*B^7)*a^4*b + (A^8 + 4*A^6*B^2 + 6*A^4*B^4 + 4*A^2*B
^6 + B^8)*a^3*b^2 + 4*(A^7*B + A^5*B^3 - A^3*B^5 - A*B^7)*a^2*b^3 + (A^8 - 2*A^4*B^4 + B^8)*a*b^4)*cos(d*x + c
) + (4*(A^6*B^2 + 2*A^4*B^4 + A^2*B^6)*a^4*b + 4*(A^7*B + A^5*B^3 - A^3*B^5 - A*B^7)*a^3*b^2 + (A^8 + 4*A^6*B^
2 + 6*A^4*B^4 + 4*A^2*B^6 + B^8)*a^2*b^3 + 4*(A^7*B + A^5*B^3 - A^3*B^5 - A*B^7)*a*b^4 + (A^8 - 2*A^4*B^4 + B^
8)*b^5)*sin(d*x + c))/((a^2 + b^2)*cos(d*x + c))) + sqrt(2)*((2*A*B*b - (A^2 - B^2)*a)*d^3*sqrt(((A^4 + 2*A^2*
B^2 + B^4)*a^2 + (A^4 + 2*A^2*B^2 + B^4)*b^2)/d^4) + ((A^4 + 2*A^2*B^2 + B^4)*a^2 + (A^4 + 2*A^2*B^2 + B^4)*b^
2)*d)*sqrt(-((2*A*B*b - (A^2 - B^2)*a)*d^2*sqrt(((A^4 + 2*A^2*B^2 + B^4)*a^2 + (A^4 + 2*A^2*B^2 + B^4)*b^2)/d^
4) - (A^4 + 2*A^2*B^2 + B^4)*a^2 - (A^4 + 2*A^2*B^2 + B^4)*b^2)/(4*A^2*B^2*a^2 + 4*(A^3*B - A*B^3)*a*b + (A^4
- 2*A^2*B^2 + B^4)*b^2))*(((A^4 + 2*A^2*B^2 + B^4)*a^2 + (A^4 + 2*A^2*B^2 + B^4)*b^2)/d^4)^(1/4)*log(((4*(A^4*
B^2 + A^2*B^4)*a^4 + 4*(A^5*B - A*B^5)*a^3*b + (A^6 + 3*A^4*B^2 + 3*A^2*B^4 + B^6)*a^2*b^2 + 4*(A^5*B - A*B^5)
*a*b^3 + (A^6 - A^4*B^2 - A^2*B^4 + B^6)*b^4)*d^2*sqrt(((A^4 + 2*A^2*B^2 + B^4)*a^2 + (A^4 + 2*A^2*B^2 + B^4)*
b^2)/d^4)*cos(d*x + c) - sqrt(2)*((4*A^2*B^3*a^3 + 4*(2*A^3*B^2 - A*B^4)*a^2*b + (5*A^4*B - 6*A^2*B^3 + B^5)*a
*b^2 + (A^5 - 2*A^3*B^2 + A*B^4)*b^3)*d^3*sqrt(((A^4 + 2*A^2*B^2 + B^4)*a^2 + (A^4 + 2*A^2*B^2 + B^4)*b^2)/d^4
)*cos(d*x + c) + (4*(A^4*B^3 + A^2*B^5)*a^4 + 4*(A^5*B^2 - A*B^6)*a^3*b + (A^6*B + 3*A^4*B^3 + 3*A^2*B^5 + B^7
)*a^2*b^2 + 4*(A^5*B^2 - A*B^6)*a*b^3 + (A^6*B - A^4*B^3 - A^2*B^5 + B^7)*b^4)*d*cos(d*x + c))*sqrt(-((2*A*B*b
 - (A^2 - B^2)*a)*d^2*sqrt(((A^4 + 2*A^2*B^2 + B^4)*a^2 + (A^4 + 2*A^2*B^2 + B^4)*b^2)/d^4) - (A^4 + 2*A^2*B^2
 + B^4)*a^2 - (A^4 + 2*A^2*B^2 + B^4)*b^2)/(4*A^2*B^2*a^2 + 4*(A^3*B - A*B^3)*a*b + (A^4 - 2*A^2*B^2 + B^4)*b^
2))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*(((A^4 + 2*A^2*B^2 + B^4)*a^2 + (A^4 + 2*A^2*B^2 + B^
4)*b^2)/d^4)^(1/4) + (4*(A^6*B^2 + 2*A^4*B^4 + A^2*B^6)*a^5 + 4*(A^7*B + A^5*B^3 - A^3*B^5 - A*B^7)*a^4*b + (A
^8 + 4*A^6*B^2 + 6*A^4*B^4 + 4*A^2*B^6 + B^8)*a^3*b^2 + 4*(A^7*B + A^5*B^3 - A^3*B^5 - A*B^7)*a^2*b^3 + (A^8 -
 2*A^4*B^4 + B^8)*a*b^4)*cos(d*x + c) + (4*(A^6*B^2 + 2*A^4*B^4 + A^2*B^6)*a^4*b + 4*(A^7*B + A^5*B^3 - A^3*B^
5 - A*B^7)*a^3*b^2 + (A^8 + 4*A^6*B^2 + 6*A^4*B^4 + 4*A^2*B^6 + B^8)*a^2*b^3 + 4*(A^7*B + A^5*B^3 - A^3*B^5 -
A*B^7)*a*b^4 + (A^8 - 2*A^4*B^4 + B^8)*b^5)*sin(d*x + c))/((a^2 + b^2)*cos(d*x + c))) + 8*((A^4*B + 2*A^2*B^3
+ B^5)*a^2 + (A^4*B + 2*A^2*B^3 + B^5)*b^2)*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c)))/(((A^4 + 2*A
^2*B^2 + B^4)*a^2 + (A^4 + 2*A^2*B^2 + B^4)*b^2)*d)

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [B]  time = 0.27, size = 968, normalized size = 7.93 \[ \frac {2 B \sqrt {a +b \tan \left (d x +c \right )}}{d}-\frac {\ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) A \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}}{4 d b}+\frac {\ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) A \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a}{4 d b}-\frac {\ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) B \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{4 d}+\frac {b \arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) A}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}-\frac {\arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) B \sqrt {a^{2}+b^{2}}}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}+\frac {\arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) B a}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}+\frac {\ln \left (\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-b \tan \left (d x +c \right )-a -\sqrt {a^{2}+b^{2}}\right ) A \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}}{4 d b}-\frac {\ln \left (\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-b \tan \left (d x +c \right )-a -\sqrt {a^{2}+b^{2}}\right ) A \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a}{4 d b}+\frac {\ln \left (\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-b \tan \left (d x +c \right )-a -\sqrt {a^{2}+b^{2}}\right ) B \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{4 d}-\frac {b \arctan \left (\frac {\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-2 \sqrt {a +b \tan \left (d x +c \right )}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) A}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}+\frac {\arctan \left (\frac {\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-2 \sqrt {a +b \tan \left (d x +c \right )}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) B \sqrt {a^{2}+b^{2}}}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}-\frac {\arctan \left (\frac {\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-2 \sqrt {a +b \tan \left (d x +c \right )}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) B a}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x)

[Out]

2*B*(a+b*tan(d*x+c))^(1/2)/d-1/4/d/b*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a
^2+b^2)^(1/2))*A*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*(a^2+b^2)^(1/2)+1/4/d/b*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2
)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*A*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a-1/4/d*ln(b*tan(d*x+c)+a+(a+
b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*B*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+1/d*b/(2*(a
^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*
a)^(1/2))*A-1/d/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/
(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*B*(a^2+b^2)^(1/2)+1/d/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^
(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*B*a+1/4/d/b*ln((a+b*tan(d*x+c))^(1/2)*(2*(
a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*A*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*(a^2+b^2)^(1/2)-1/4/
d/b*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*A*(2*(a^2+b^2)^(1/
2)+2*a)^(1/2)*a+1/4/d*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*
B*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-1/d*b/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a
+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*A+1/d/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^
(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*B*(a^2+b^2)^(1/2)-1/d/(2*(a^2+b^2)^(
1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))
*B*a

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(b-a>0)', see `assume?` for mor
e details)Is b-a positive, negative or zero?

________________________________________________________________________________________

mupad [B]  time = 8.64, size = 845, normalized size = 6.93 \[ 2\,\mathrm {atanh}\left (\frac {32\,B^2\,b^4\,\sqrt {\frac {B^2\,a}{4\,d^2}-\frac {\sqrt {-B^4\,b^2\,d^4}}{4\,d^4}}\,\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )}}{\frac {16\,B\,b^4\,\sqrt {-B^4\,b^2\,d^4}}{d^3}+\frac {16\,B\,a^2\,b^2\,\sqrt {-B^4\,b^2\,d^4}}{d^3}}-\frac {32\,a\,b^2\,\sqrt {\frac {B^2\,a}{4\,d^2}-\frac {\sqrt {-B^4\,b^2\,d^4}}{4\,d^4}}\,\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )}\,\sqrt {-B^4\,b^2\,d^4}}{\frac {16\,B\,b^4\,\sqrt {-B^4\,b^2\,d^4}}{d}+\frac {16\,B\,a^2\,b^2\,\sqrt {-B^4\,b^2\,d^4}}{d}}\right )\,\sqrt {-\frac {\sqrt {-B^4\,b^2\,d^4}-B^2\,a\,d^2}{4\,d^4}}-\mathrm {atanh}\left (\frac {d^3\,\left (\frac {16\,\left (A^2\,b^4-A^2\,a^2\,b^2\right )\,\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )}}{d^2}-\frac {16\,a\,b^2\,\left (\sqrt {-A^4\,b^2\,d^4}-A^2\,a\,d^2\right )\,\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )}}{d^4}\right )\,\sqrt {\frac {\sqrt {-A^4\,b^2\,d^4}-A^2\,a\,d^2}{d^4}}}{16\,\left (A^3\,a^2\,b^3+A^3\,b^5\right )}\right )\,\sqrt {\frac {\sqrt {-A^4\,b^2\,d^4}-A^2\,a\,d^2}{d^4}}-2\,\mathrm {atanh}\left (\frac {32\,B^2\,b^4\,\sqrt {\frac {\sqrt {-B^4\,b^2\,d^4}}{4\,d^4}+\frac {B^2\,a}{4\,d^2}}\,\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )}}{\frac {16\,B\,b^4\,\sqrt {-B^4\,b^2\,d^4}}{d^3}+\frac {16\,B\,a^2\,b^2\,\sqrt {-B^4\,b^2\,d^4}}{d^3}}+\frac {32\,a\,b^2\,\sqrt {\frac {\sqrt {-B^4\,b^2\,d^4}}{4\,d^4}+\frac {B^2\,a}{4\,d^2}}\,\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )}\,\sqrt {-B^4\,b^2\,d^4}}{\frac {16\,B\,b^4\,\sqrt {-B^4\,b^2\,d^4}}{d}+\frac {16\,B\,a^2\,b^2\,\sqrt {-B^4\,b^2\,d^4}}{d}}\right )\,\sqrt {\frac {\sqrt {-B^4\,b^2\,d^4}+B^2\,a\,d^2}{4\,d^4}}-\mathrm {atanh}\left (\frac {d^3\,\left (\frac {16\,\left (A^2\,b^4-A^2\,a^2\,b^2\right )\,\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )}}{d^2}+\frac {16\,a\,b^2\,\left (\sqrt {-A^4\,b^2\,d^4}+A^2\,a\,d^2\right )\,\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )}}{d^4}\right )\,\sqrt {-\frac {\sqrt {-A^4\,b^2\,d^4}+A^2\,a\,d^2}{d^4}}}{16\,\left (A^3\,a^2\,b^3+A^3\,b^5\right )}\right )\,\sqrt {-\frac {\sqrt {-A^4\,b^2\,d^4}+A^2\,a\,d^2}{d^4}}+\frac {2\,B\,\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*tan(c + d*x))*(a + b*tan(c + d*x))^(1/2),x)

[Out]

2*atanh((32*B^2*b^4*((B^2*a)/(4*d^2) - (-B^4*b^2*d^4)^(1/2)/(4*d^4))^(1/2)*(a + b*tan(c + d*x))^(1/2))/((16*B*
b^4*(-B^4*b^2*d^4)^(1/2))/d^3 + (16*B*a^2*b^2*(-B^4*b^2*d^4)^(1/2))/d^3) - (32*a*b^2*((B^2*a)/(4*d^2) - (-B^4*
b^2*d^4)^(1/2)/(4*d^4))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(-B^4*b^2*d^4)^(1/2))/((16*B*b^4*(-B^4*b^2*d^4)^(1/2)
)/d + (16*B*a^2*b^2*(-B^4*b^2*d^4)^(1/2))/d))*(-((-B^4*b^2*d^4)^(1/2) - B^2*a*d^2)/(4*d^4))^(1/2) - atanh((d^3
*((16*(A^2*b^4 - A^2*a^2*b^2)*(a + b*tan(c + d*x))^(1/2))/d^2 - (16*a*b^2*((-A^4*b^2*d^4)^(1/2) - A^2*a*d^2)*(
a + b*tan(c + d*x))^(1/2))/d^4)*(((-A^4*b^2*d^4)^(1/2) - A^2*a*d^2)/d^4)^(1/2))/(16*(A^3*b^5 + A^3*a^2*b^3)))*
(((-A^4*b^2*d^4)^(1/2) - A^2*a*d^2)/d^4)^(1/2) - 2*atanh((32*B^2*b^4*((-B^4*b^2*d^4)^(1/2)/(4*d^4) + (B^2*a)/(
4*d^2))^(1/2)*(a + b*tan(c + d*x))^(1/2))/((16*B*b^4*(-B^4*b^2*d^4)^(1/2))/d^3 + (16*B*a^2*b^2*(-B^4*b^2*d^4)^
(1/2))/d^3) + (32*a*b^2*((-B^4*b^2*d^4)^(1/2)/(4*d^4) + (B^2*a)/(4*d^2))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(-B^
4*b^2*d^4)^(1/2))/((16*B*b^4*(-B^4*b^2*d^4)^(1/2))/d + (16*B*a^2*b^2*(-B^4*b^2*d^4)^(1/2))/d))*(((-B^4*b^2*d^4
)^(1/2) + B^2*a*d^2)/(4*d^4))^(1/2) - atanh((d^3*((16*(A^2*b^4 - A^2*a^2*b^2)*(a + b*tan(c + d*x))^(1/2))/d^2
+ (16*a*b^2*((-A^4*b^2*d^4)^(1/2) + A^2*a*d^2)*(a + b*tan(c + d*x))^(1/2))/d^4)*(-((-A^4*b^2*d^4)^(1/2) + A^2*
a*d^2)/d^4)^(1/2))/(16*(A^3*b^5 + A^3*a^2*b^3)))*(-((-A^4*b^2*d^4)^(1/2) + A^2*a*d^2)/d^4)^(1/2) + (2*B*(a + b
*tan(c + d*x))^(1/2))/d

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (A + B \tan {\left (c + d x \right )}\right ) \sqrt {a + b \tan {\left (c + d x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))**(1/2)*(A+B*tan(d*x+c)),x)

[Out]

Integral((A + B*tan(c + d*x))*sqrt(a + b*tan(c + d*x)), x)

________________________________________________________________________________________